Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Critical manifold of the kagome-lattice Potts model

Identifieur interne : 005D48 ( Main/Exploration ); précédent : 005D47; suivant : 005D49

Critical manifold of the kagome-lattice Potts model

Auteurs : Jesper Lykke Jacobsen [France] ; Christian R. Scullard [États-Unis]

Source :

RBID : Pascal:13-0080432

Descripteurs français

English descriptors

Abstract

Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B ⊆ G; we call B a basis of G. We introduce a two-parameter graph polynomial PB(q, v) that depends on B and its embedding in G. The algebraic curve PB(q, v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = eK - 1, defined on G. This curve predicts the phase diagram not only in the physical ferromagnetic regime (v > 0), but also in the antiferromagnetic (v < 0) region, where analytical results are often difficult to obtain. For larger bases B the approximations become increasingly accurate, and we conjecture that PB(q, v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G-or for the Ising model (q = 2) on any G-the polynomial PB(q, v) factorizes for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of PB(q, v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for two choices of G: the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker- Kadanoff phase at certain Beraha numbers. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F Y Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. We perform large-scale numerical computations for comparison and find excellent agreement with the polynomial predictions. For v > 0 the accuracy of the predicted critical coupling vc is of the order 10-4 or 10-5 for the six-edge basis, and improves to 10-6 or 10-7 for the largest basis studied (with 36 edges).


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Critical manifold of the kagome-lattice Potts model</title>
<author>
<name sortKey="Lykke Jacobsen, Jesper" sort="Lykke Jacobsen, Jesper" uniqKey="Lykke Jacobsen J" first="Jesper" last="Lykke Jacobsen">Jesper Lykke Jacobsen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LPTENS, École Normale Supérieure, 24 rue Lhomond</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>75231 Paris</wicri:noRegion>
<placeName>
<settlement type="city">Paris</settlement>
<region type="région" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Universite Pierre et Marie Curie, 4 place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>75252 Paris</wicri:noRegion>
<placeName>
<settlement type="city">Paris</settlement>
<region type="région" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Pierre-et-Marie-Curie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Scullard, Christian R" sort="Scullard, Christian R" uniqKey="Scullard C" first="Christian R." last="Scullard">Christian R. Scullard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, CA 94550</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lawrence Livermore National Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0080432</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0080432 INIST</idno>
<idno type="RBID">Pascal:13-0080432</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C44</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005221</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001228</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001228</idno>
<idno type="wicri:doubleKey">1751-8113:2012:Lykke Jacobsen J:critical:manifold:of</idno>
<idno type="wicri:Area/Main/Merge">006063</idno>
<idno type="wicri:Area/Main/Curation">005D48</idno>
<idno type="wicri:Area/Main/Exploration">005D48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Critical manifold of the kagome-lattice Potts model</title>
<author>
<name sortKey="Lykke Jacobsen, Jesper" sort="Lykke Jacobsen, Jesper" uniqKey="Lykke Jacobsen J" first="Jesper" last="Lykke Jacobsen">Jesper Lykke Jacobsen</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LPTENS, École Normale Supérieure, 24 rue Lhomond</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Universite Pierre et Marie Curie, 4 place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Pierre-et-Marie-Curie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Scullard, Christian R" sort="Scullard, Christian R" uniqKey="Scullard C" first="Christian R." last="Scullard">Christian R. Scullard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Lawrence Livermore National Laboratory</s1>
<s2>Livermore, CA 94550</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Lawrence Livermore National Laboratory</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic curve</term>
<term>Antiferromagnetism</term>
<term>Embedding</term>
<term>Ferromagnetism</term>
<term>Infinite dimension</term>
<term>Ising model</term>
<term>Kagomé lattices</term>
<term>Lattice model</term>
<term>Phase diagrams</term>
<term>Potts model</term>
<term>Singularity</term>
<term>Solvability</term>
<term>Square lattices</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réseau Kagomé</term>
<term>Modèle réticulaire</term>
<term>Modèle Potts</term>
<term>Dimension infinie</term>
<term>Plongement</term>
<term>Courbe algébrique</term>
<term>Diagramme phase</term>
<term>Ferromagnétisme</term>
<term>Antiferromagnétisme</term>
<term>Modèle Ising</term>
<term>Résolubilité</term>
<term>Réseau carré</term>
<term>Singularité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B ⊆ G; we call B a basis of G. We introduce a two-parameter graph polynomial P
<sub>B</sub>
(q, v) that depends on B and its embedding in G. The algebraic curve P
<sub>B</sub>
(q, v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = e
<sup>K</sup>
- 1, defined on G. This curve predicts the phase diagram not only in the physical ferromagnetic regime (v > 0), but also in the antiferromagnetic (v < 0) region, where analytical results are often difficult to obtain. For larger bases B the approximations become increasingly accurate, and we conjecture that P
<sub>B</sub>
(q, v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G-or for the Ising model (q = 2) on any G-the polynomial P
<sub>B</sub>
(q, v) factorizes for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P
<sub>B</sub>
(q, v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for two choices of G: the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker- Kadanoff phase at certain Beraha numbers. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F Y Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. We perform large-scale numerical computations for comparison and find excellent agreement with the polynomial predictions. For v > 0 the accuracy of the predicted critical coupling v
<sub>c</sub>
is of the order 10-
<sup>4</sup>
or 10
<sup>-5</sup>
for the six-edge basis, and improves to 10
<sup>-6</sup>
or 10
<sup>-7</sup>
for the largest basis studied (with 36 edges).</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
<orgName>
<li>Université Pierre-et-Marie-Curie</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Lykke Jacobsen, Jesper" sort="Lykke Jacobsen, Jesper" uniqKey="Lykke Jacobsen J" first="Jesper" last="Lykke Jacobsen">Jesper Lykke Jacobsen</name>
</region>
<name sortKey="Lykke Jacobsen, Jesper" sort="Lykke Jacobsen, Jesper" uniqKey="Lykke Jacobsen J" first="Jesper" last="Lykke Jacobsen">Jesper Lykke Jacobsen</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Scullard, Christian R" sort="Scullard, Christian R" uniqKey="Scullard C" first="Christian R." last="Scullard">Christian R. Scullard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005D48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005D48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:13-0080432
   |texte=   Critical manifold of the kagome-lattice Potts model
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024